Core course 10 Code: BO6CRT10 CELL AND MOLECULAR BIOLOGY

(Theory 54 hrs; Practical 36 hrs; Credits 3 + 1)

Objectives:

- Understand the ultra structure and functioning of cell in the sub-microscopic and molecular
- Get an idea of origin, concept of continuity and complexity of life activities.
- Familiarization of life processes.
- Understand the basic and scientific aspect of diversity.
- Understand the cytological aspects of growth and development.
- Understand DNA as the basis of heredity and variation.

CELL BIOLOGY (Theory 27 hrs; Practical 27 hrs)

Module1: Ultra structure of cell components (8 hrs)

Cell biology through ages: a brief history of cell biology. Cytosol - chemical composition. Composition, structure and function of plasma membrane - fluid mosaic model.

The ultra-structure of a plant cell with structure and function of the following organelles: Endoplasmic reticulum, chloroplasts, Mitochondria, Ribosomes, Dictyosomes, Microbodies peroxisomes and glyoxisomes, lysosomes and vacuole. Cytoskeleton - microtubules and microfilaments.

Ultra structure of nucleus: nuclear envelope - detailed structure of pore complex, nucleoplasm composition, nucleolus.

Module 2: Chromosomes (6 hrs)

Chromosomes: introduction, chromosome number, autosomes and allosomes, morphology metacentric, submetacentric, acrocentric and telocentric. Structure - chromatid, chromonema, chromomere, centromere and kinetochore, telomere, secondary constriction and nucleolar organizer. Chromatin fibres: heterochromatin and euchromatin. Karyotype and ideogram.

Chemical composition of chromatin: histones and non-histones, arrangement of proteins and DNA in chromatin - the 10 nm fibre (nucleosome model), 30 nm fibre (solenoid model) and central axis with radial loops of 300 nm fibre.

Special type of chromosomes: giant chromosomes (salivary gland chromosomes, Lamp brush chromosomes), supernumerary chromosomes (B chromosome).

Module 3: Cell division (6 hrs)

Cell cycle - definition, different stages - interphase (G1, S and G2) and division phase. Mitosis: karyokinesis and cytokinesis, significance of mitosis. Meiosis: stages - first meiotic division (reduction division) and second meiotic (equational division), structure and function of synaptonemal complex, significance of meiosis; comparison of mitosis and meiosis.

Module 4: Chromosomal aberrations (4 hrs)

Numerical: heteroploidy; euploidy - haploidy; polyploidy - autopolyploidy, allopolyploidy (Raphanobrassica); aneuploidy - monosomy, trisomy (Fruit morphology in Datura), nullisomy (Triticum). Numerical chromosomal abnormalities in man: Down's syndrome, Klinefelter's syndrome, Turner's syndrome.

Structural: deletion (Cri-du-chat syndrome), duplication (Bar eye in Drosophila), inversions (paracentric and pericentric) and Translocations (Robertsonian translocation).

Module 5: Mutation (3 hrs)

Mutation: definition, importance. Types of mutations: somatic and germinal; spontaneous and

induced; chromosomal and gene or point mutations. Molecular basis of mutation: frame shift, transition, transversion and substitution. Mechanism of mutation induction: base replacement, base alteration, base damage, errors in DNA replication. Mutagens: physical - non-ionizing and ionizing radiations; chemical - base analogs, alkylating agents, deaminating agents.

PRACTICAL (27 hrs)

- 1. Make acetocarmine squash preparation of onion root tip to identify mitotic stages.
- 2. Study the mitotic index of onion root tip cells (Demonstration only).
- 3. Study of the different stages of meiosis and identification of different substages of prophase I using photomicrographs or pictures.
- 4. Identify and study the chromosomal anomalies, patterns and karyotype in man such as Down's syndrome, Turner's syndrome and Klinefelter's syndrome.

MOLECULAR BIOLOGY (Theory 27 hrs; Practical 9 hrs)

Module 6: The genetic material (8 hrs)

Molecular biology: a brief historical prelude. Identification of DNA as genetic material: direct evidences - transformation experiment by Avery et al.; Hershey and Chase Experiment. Evidences for RNA as genetic material in some viruses.

Nucleic acids: DNA and RNA, important features of Watson and Crick model of DNA; Chargaff's rule. Alternate forms of DNA - comparison of A, B and Z forms. Structure and function of different types of RNA - tRNA, mRNA, rRNA, snRNA, miRNA.

Module 7: Replication of DNA (4 hrs)

Semiconservative replication of DNA - Messlson and Stahl's experiment; process of semiconservative replication with reference to the enzymes involved in each step.

Module 8: Gene expression (8 hrs)

Gene expression: concept of gene, split genes, one gene one enzyme hypothesis, one gene one polypeptide hypothesis, the central dogma, reverse transcription. Details of transcription in prokaryotes and eukaryotes; hnRNA, splicing, release of mRNA. Translation - initiation, elongation and termination. Genetic code and its features, wobble hypothesis.

Module 9: Regulation of gene expression (5 hrs)

Regulation of gene expression in prokaryotes: operon concept, indicible and repressible systems, negative control and positive control. Lac operon, catabolic repression. Tryptophan operon, attenuation. Regulation in eucaryotes (brief account only).

Module 10: Genetics of cancer (2 hrs)

Genetic basis of cancer - brief description of proto-oncogenes and oncogenes, tumour suppressor genes; characteristics of cancer cells.

PRACTICAL (9 hrs)

6. Work out elementary problems based on DNA structure, replication, transcription and translation and genetic code.

REFERENCES

- 1. Aggarwal S K, 2009. Foundation Course in Biology (II Edn). Ane Books Pvt. Ltd.
- 2. Avinash, Kakoli Upadhyay, 2005. Basic Molecular Biology. Himalaya Publishing House, Mumbai.
- 3. Cohn N S, 1964. Elements of Cytology. Brace and World Inc., New Delhi.
- 4. Darlington C D, 1965. Cytology. Churchill, London.

- 5. Darnel J, Lodish, Hand Baltimore D, 1991. Cell and molecular biology. Lea and Fibiger, Washington.
- 6. De Robertis E D P, Robertis E M P, 1991. Cell and molecular biology. Scientific American books.
- 7. Dobzhansky B, 1961. Genetics and origin of species. Columbia University Press, New York.
- 8. Gardner E J, Snustad D P, 1984. Principles of Genetics. John wiley, NewYork.
- 9. Gerald Karp, 2006. Cell Biology. McGraw Hill company.
- 10. Gupta P K. Genetics. Rastogi Publications.
- 11. Lewin B, 1999. Genes. Oxford University Press, NewYork.
- 12. Lewis W H, 1980. Polyploidy. Plenum Press, NewYork.
- 13. Roy S C, Kalayan Kumar De, 1997. Cell biology. New central Boos, Calcutta.
- 14. Sandhya Mitra, 1998. Elements of Molecular biology. Macmillan, India Ltd.
- 15. Sharma A K, Sharma A, 1980. Chromosome technique: Theory and practice. Aditya Books, NewYork.
- 16. Veer Bala Rastogi, 2008. Fundamentals of Molecular Biology. Ane Books Pvt. Ltd.
- 17. Wayne M Becker, Lewis J Kleinsmith, Jeff Hardin, 2004. The World of Cell. Pearson Education.
- 18. Waseem Ahammede (faridi), 2013. Genetics and Genomics. Pearson.

Core course 11 Code: BO6CRT11 ANGIOSPERM MORPHOLOGY, TAXONOMY AND ECONOMIC BOTANY (Theory 72 hrs; Practical 45 hrs; Credits 3 + 1)

Objectives:

- Acquaint with the aims, objectives and significance of taxonomy.
- Identify the common species of plants growing in Kerala and their systematic position.
- Develop inductive and deductive reasoning ability.
- Acquaint with the basic technique in the preparation of herbarium.
- Familiarizing with the plants having immense economic importance.

ANGIOSPERM MORPHOLOGY

Module 1: Leaf, Inflorescence and Fruit morphology (13 hrs)

Leaf Morphology: types, venation, phyllotaxy. Morphology of flower: flower as modified shoot; detailed structure of flowers - floral parts - their arrangement, relative position - symmetry, aestivation and placentation types - cohesion and adhesion. Floral diagram and floral formula. Inflorescence: racemose types - simple raceme, corymb, umbel, spike, spadix, head and catkin; cymose types simple cyme; monochasial - scorpoid and helicoid, dichasial and polychasial; special type - cyathium, hypanthodium, verticillaster, thyrsus and panicle. Fruits: simple - fleshy, dry - dehiscent, schizocarpic, indehiscent, aggregate, multiple (sorosis and syconus).

TAXONOMY

Module 2: Principles of Plant systematics (12 hrs)

Aim, scope, significance and components of taxonomy. Types of classification - artificial (brief account), natural - Bentham and Hooker (Detailed account) and Phylogenetic (Brief account). Angiosperm phylogeny group system (introduction only). Plant nomenclature - binomial, ICBN/ICN principles - rule of priority and author citation. Interdiciplinary approach in taxonomy -