SEMESTER V

Code: BO5CRT05 Core course 5

ANATOMY, REPRODUCTIVE BOTANY AND MICROTECHNIQUE

(Theory 54 hrs; Practical 36 hrs; Credits 3 + 1)

Objectives:

- Imparting an insight into the internal structure and reproduction of the most evolved group of plants, the Angiosperm.
- Understand the individual cells and also tissues simultaneously
- Understand the structural adaptations in plants growing in different environment.
- Understand the morphology and development of reproductive parts.
- Get an insight in to the fruit and seed development.
- Understand the techniques used to preserve and study plant materials.

ANATOMY (Theory: 27 hrs. Practical: 18 hrs)

Module 1: Structure and composition of plant cells (8 hrs)

Cell wall: structure of cell wall; sub-microscopic structure - cellulose, micelle, micro fibril and macro fibril; structure and function of plasmodesmata, simple and bordered pits; different types of cell wall thickening in treachery elements; extra cell wall thickening materials. Growth of cell wall apposition, intussusception. Non-living inclusions in plant cells: food products, secretory products, excretory (waste) products - nitrogenous and non nitrogenous.

Module 2: Organization of tissues (9 hrs)

Tissues: meristematic tissue – characteristic features, functions and classification. Theories on apical organization - apical cell theory, histogen theory, tunica-corpus theory. Permanent tissues - structure and function of simple and complex tissues. Secretory tissues: external secretory tissue - glands and nectaries; internal secretory tissues - laticifers.

Tissue systems: epidermal tissue system - epidermis, cuticle, trichome; stomata - structure, types; bulliform cells. Ground tissue system - cortex, endodermis, pericycle, pith and pith rays. Vascular tissue system - structure of xylem and phloem, different types of vascular bundles and their arrangement in root and stem.

Module 3: Plant body structure (6 hrs)

Primary structure of stem, root and leaf (dicot and monocot). Normal secondary growth in dicot stem and root. Periderm: structure and development - phellum, phellogen, phelloderm, bark, and lenticels. Anomalous secondary thickening: Bignonia stem, Boerhaavia stem and Dracaena stem.

Module 4: Wood anatomy (4 hrs)

Basic structure of wood - heart wood, sap wood; hard wood, soft wood; growth rings and dendrochronology; porous and non-porous wood; ring porous and diffuse porous wood, tyloses. Reaction wood: tension wood and compression wood.

PRACTICAL (18 hrs)

- 1. Study of cell types and tissues.
- 2. Non-living inclusions starch grains, cystolith, raphides, aleurone grains.
- 3. Primary structure of stem, root and leaf Dicots and Monocots.
- 4. Dissect and identify the stomatal types anomocytic, anisocytic, paracytic and diacytic.
- 5. Secondary structure of dicot stem and root.
- 6. Anomalous secondary structure of Bignonia stem, Boerhaavia stem, and Dracaena stem.

REPRODUCTIVE BOTANY (Theory 18 hrs; Practical 9 hrs)

Module 5: Introduction (2 hrs)

Introduction to embryology, floral morphology - parts of flower.

Module 6: Microsporangium and male gametophyte (4 hrs)

Microsporangium: structure and development of anther, microsporogenesis, dehiscence of anther, structure of pollen. Male gametophyte development.

Module 7: Megasporangium and female gametophyte (6 hrs)

Megasporangium: types of ovules - anatropous, orthotropous, amphitropous, campylotropous, circinotropous. Megasporogenesis – female gametophyte – structure of a typical embryosac, types of embryosacs - monosporic (*Polygonum* type), bisporic (*Allium* type) and tetrasporic (*Peperomia* type).

Module 8: Fertilization (2 hrs)

Mechanism of pollination, agents of pollination, germination of pollen grains; double fertilization.

Module 9: Endosperm and embryo (4 hrs)

Endosperm: types - cellular, nuclear and helobial. Embryogeny, structure of dicot and monocot embryo, seed formation. Polyembryony.

PRACTICAL (9 hrs)

- 1. Dissect and display parts of different types of flowers.
- 2. Identification of C.S. of anther, embryo sac and embryo.
- 3. Identification of various anther types monothecous, dithecous.
- 4. Identify the different types of ovules.

MICROTECHNIQUE (Theory 9 hrs; Practical 9 hrs)

Module 6: Preservation of plant specimens, sectioning and mounting (9 hrs)

Introduction to microtechnique: killing and fixing - purpose. Dehydration - purpose, agents used ethyl alcohol. Sectioning: hand sections, serial section; Microtome - rotary, sledge (application only). Staining technique: principle of staining; stains - hematoxylin, fast green, acetocarmine; vital stains neutral red, Evans blue; mordants - purpose with examples. Types of staining - single staining, double staining. Mounting and mounting media - purpose, mounting media - glycerine, DPX, Canada balsam. Use of permanent whole mounts; permanent sections; maceration, smear and squash preparation.

PRACTICAL (9 hrs)

- 1. Familiarize preparation and use of stains, fixatives and mounting media.
- 2. Preparation of smears and squash.
- 3. Demonstration of microtome sectioning.
- 4. Maceration and identification of tracheary elements.
- 5. Preparation of single stained hand sections (Permanent demonstration only).

REFERENCES

- 1. Bhojwani S S, Bhatnagar S P, 2011. The Embryology of Angiosperms (V Edn). Vikas Publishing House, Delhi.
- 2. Coutler E G, 1969. Plant Anatomy Part1: Cells and Tissues. Edward Arnold, London.
- 3. Dickinson W C, 2000. Integrative Plant Anatomy. Har cort Acdemic Press, USA.
- 4. Easu K, 1977. Anatomy of seed plants (II Edn). Wiley Eastern, New York.
- 5. Fahn A, 1982. Plant Anatomy (III Edn). Pergamon Press, Oxford.
- 6. Johnson D A, 1940. Plant Microtechnique, McGraw Hill Co., New York.
- 7. Johri B M, 1984. Embryology of Angiosperms. Springer-Verlag.

- 8. Khasim S M, 2002. Botanical Microtechnique: Principles and Practice. Capital Publishing Company, New Delhi.
- 9. Maheshwari P, 1971. An introduction to the Embryology of Angiosperms. Tata McGraw Hill Publishing Company Ltd., New Delhi.
- 10. Pandey B P, 2015. Plant Anatomy. S Chand Publ., New Delhi.
- 11. Patki L R, B L Bhalchandra, I H Jeevaji, 1983. An Introduction to microtechnique. S Chand & Co.
- 12. Prasad M K, Krishna Prasad M, 1986. Outlines of microtechnique. Emkay Publishers, New Delhi.
- 13. Raghavan V, 2000. Developmental biology of flowering plants. Springer, Netherlands.
- 14. Shivanna K R, 2003. Pollen Biology and Biotechnology. Oxford and IBH, Delhi.
- 15. Vashista P C, 1984. Plant Anatomy. Pradeep publication, Jalandhar.

Core course 6 Code: BO5CRT06 RESEARCH METHODOLOGY, BIOPHYSICS AND BIOSTATISTICS Theory: 54 hrs; Practical: 45 hrs; Credits: 3 + 1)

Objectives:

- To equip the students to conduct independent research and prepare research reports.
- To make the students acquaint with different tools and techniques used in research work.
- To equip the students with basic computer skills necessary for conducting research.
- To enable the students to have enough numerical skills necessary to carry out research.

RESEARCH METHODOLOGY (Theory 18 hrs; Practical 18 hrs)

Module 1: Introduction (4 hrs)

Objectives of research. Types of research - pure and applied. Identification of research problem. Review of literature: purpose, literature sources - names of reputed National and International journals in life science (2 international & 3 national); reprint acquisition - INSDOC, INFLIBNET.

Module 2: Process of research (7 hrs)

Conducting research: define the problem, identify the objective, design the study, collection of data, analysis and interpretation. Preparation of research report: preparation of dissertation - IMRAD system - preliminary pages, introduction and review of literature, materials and methods, results, discussion, conclusion and bibliography.

Module 3: Use of computer in research (7 hrs)

Introduction to MS - WINDOWS and LINUX, application of MS WORD - word Processing, editing tools (cut, copy, paste), formatting tools. MS EXCEL - creating worksheet, data entry, sorting data. Statistical tools (SUM, MEAN, MEDIAN and MODE). Preparation of graphs and diagrams (Bar diagram, pie chart, line chart, histogram). MS-POWERPOINT - presentation based on a biological topic; inserting tables, charts, pictures. Open source and free alternatives to MS Office: Libre Office, Open Office (brief study). Search engines: Google.com; meta search engine – dogpile.com; academic search - Google scholar. Educational sites related to biological science - Scitable, DNAi.

PRACTICAL (18 hrs)

- 1. Prepare outline of a dissertation (IMRAD system).
- 2. Prepare a list of references (not less than 10) on a topic in biological science.
- 3. Review the literature on a given topic.
- 4. Collect information on a topic related to biological science using the internet.